Abstract

We describe a novel scheme for obtaining a superhigh numerical aperture gradient-index (SHNA GRIN) lens from multiple thin layers of two or more materials with large refractive-index contrast. Design procedures for the lens are described, including variation of the layer thickness to achieve focusing and of the thickness limit to reduce scattering loss. We use an exact numerical solution by the finite-difference time-domain method to evaluate the lens's performance. Specific examples of a SHNA GRIN lens with a SiO2-TiO2 material system designed for fiber coupling to a nanowaveguide are shown to have focusing FWHM spot sizes of 0.53-0.7 microm at lambda =1.55 microm (corresponding to a NA of approximately 1.6-1.1) with 2.7-2.4% more loss than an ideal continuous index profile GRIN lens. With this approach, a SHNA GRIN lens with a NA of > 1.5 and a length of <20 microm can be achieved with currently available thin-film deposition techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.