Abstract
Although superhardness effects have been extensively investigated for epitaxial ceramic nanomultilayer films with the same crystal structures in the last decade, those for multilayers with different crystal structures have been seldom studied. In this article, NbN/TaN nanomultilayers have been designed and deposited by reactive magnetron sputtering. The results showed that the crystal structures of NbN and TaN are face-centered cubic and hexagonal in superlattice films, respectively, and the lattice plane (111) of NbN is coherent with the (110) of TaN, i.e., {111}fcc-NbN∥{110}h-TaN. The results of microhardness measurement showed that the superhardness effects of NbN/TaN multilayers exist in a wide range of modulation period from 2.3 to 17.0 nm. This phenomenon is different from that of epitaxial ceramic multilayers where the maximum hardness usually takes place at a modulation period of 5.0–10.0 nm. It is proposed that the coherent stresses and the structural barriers (fcc/hexagonal) to dislocation motion between NbN and TaN layers are the main reasons for the high-hardness value in a wide range of modulation periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.