Abstract

Radiometric ages for supergene alunite and jarosite effectively date the oxidation of former concentrations of pyrite and any associated sulfide minerals. These K-bearing sulfate minerals, formed under low-pH conditions, are uncommon supergene products in low-sulfidation epithermal deposits because of the general paucity of pyrite for acid generation. For this reason, the age of supergene oxidation—locally to depths of 200 m or more—in the epithermal Au-Ag deposits of the Deseado massif, located in the extra-Andean foreland of Patagonia, southern Argentina, has remained unknown. Although, theoretically, the oxidation could have taken place anytime between the Late Jurassic, when the Au-Ag mineralization formed, and Pleistocene, K-Ar ages for alunite and jarosite from two widely separated and unusually pyritic, Ag-bearing hydrothermal breccias (Lejano and Libanesa) show it to have been mid-Miocene, 13.8 ± 1.8 Ma. This is the time when the Deseado massif underwent appreciable regional-scale tectonic uplift and valley incision, following ~ 140 myr during which the region was topographically subdued and the site of either fluvio-lacustrine or shallow-marine sedimentation. The uplift, combined with increasing aridity due to the orographic rain shadow caused by growth of the Patagonian Andes to the west and enhanced by global cooling, would have depressed regional groundwater tables, thereby promoting the supergene sulfide oxidation. The mid-Miocene uplift appears to have been triggered by development of a slab tear and slab window beneath the Deseado massif during early stages of subduction of the Chile oceanic-ridge spreading center at the Pacific margin. Supergene sulfide oxidation in both the Deseado massif and Atacama Desert of northern Chile was the result of Cenozoic uplift during progressive aridification, although the causes of these phenomena were radically different. However, when the supergene oxidation was taking place in the Deseado massif, up to 30 myr of supergene activity in the Atacama Desert were coming to an end because of the onset of hyperaridity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call