Abstract

We show that superfluidity can be used to prevent thermalisation in a nonlinear Floquet system. Generically, periodic driving boils an interacting system to a featureless infinite temperature state. Fast driving is a known strategy to postpone Floquet heating with a large but always finite boiling time. In contrast, using a nonlinear periodically driven system on a lattice, we show the existence of a continuous class of initial states which do not thermalise at all. This absence of thermalisation is associated to the existence and persistence of a stable superflow motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.