Abstract

The paper deals with numerical analysis of nonlinear vibrations of viscoelastic systems under a stochastic action in the form of a Gaussian stationary process with rational spectral density. The analysis is based on numerical simulation of the original stationary process, numerical solution of the differential equations describing the motion of the system, and computation of the maximum Lyapunov exponent if the stability of this motion is studied. An example of a plate subjected to a random stationary load applied in its plane is used to consider specific issues concerning the application of the proposed method and the peculiarities of the behavior of geometrically nonlinear elastic and viscoelastic stochastic systems. Special attention is paid to the interaction of a deterministic periodic action and a stochastic action from the viewpoint of stability of the system motion. It is shown that in some cases imposing a “colored” noise may stabilize an unstable system subjected to a periodic load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call