Abstract

We predict the formation and superfluidity of polaritons in an optical microcavity formed by excitons in gapped graphene embedded there and microcavity photons. The Rabi splitting related to the creation of an exciton in a graphene layer in the presence of the band gap is obtained. The analysis of collective excitations as well as the sound velocity is presented. We show that the superfluid density and temperature of the Kosterlitz-Thouless phase transition are decreasing functions of the energy gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.