Abstract

The main topological feature of a superfluid is a quantum vortex with an identifiable inner and outer radius. A novel unitary quantum lattice gas algorithm is used to simulate quantum turbulence of a Bose-Einstein condensate superfluid described by the Gross-Pitaevskii equation on grids up to 5760(3). For the first time, an accurate power-law scaling for the quantum Kelvin wave cascade is determined: k(-3). The incompressible kinetic energy spectrum exhibits very distinct power-law spectra in 3 ranges of k space: a classical Kolmogorov k(-(5/3)) spectrum at scales greater than the outer radius of individual quantum vortex cores and a quantum Kelvin wave cascade spectrum k(-3) on scales smaller than the inner radius of the quantum vortex core. The k(-3) quantum Kelvin wave spectrum due to phonon radiation is robust, while the k(-(5/3)) classical Kolmogorov spectrum becomes robust on large grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.