Abstract
The properties of a mixture of mutually interacting bound electron pairs and itinerant fermions (the boson-fermion model) on a lattice are further studied. We determine the superconducting critical temperature from a pseudogap phase by applying a self-consistent $T$-matrix approach, which includes the pairing fluctuations and the boson self-energy effects. The analysis is made for a three dimensional cubic lattice with tight-binding dispersion for electrons and for both standard bosons and the case of hard-core bosons. The results describe the BCS-Bose-Einstein condensation crossover with varying position of the bosonic (local pair) level and give a further insight into the nature of resonance superfluidity in the boson-fermion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.