Abstract

We consider a mixture of a spin-polarized Fermi gas and a dipolar Bose-Einstein condensate in which s-wave scattering between fermions and the quasiparticles of the dipolar condensate can result in an effective attractive Fermi-Fermi interaction anisotropic in nature and tunable by the dipolar interaction. We show that such an interaction can significantly increase the prospect of realizing a superfluid with a gap parameter characterized with a coherent superposition of all odd partial waves. We formulate, in the spirit of the Hartree-Fock-Bogoliubov mean-field approach, a theory which allows us to estimate the critical temperature when the anisotropic Fock potential is taken into consideration and to determine the system parameters that optimize the critical temperature at which such a superfluid emerges before the system begins to phase separate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.