Abstract

The effect of dipolar orientation with respect to the condensate plane on the mean-field dynamics of dipolar Bose-Einstein condensates in a pancake-shaped confinement is discussed. The stability of a quasi-two-dimensional condensate, with respect to the tilting angle, is found to be different from a two-dimensional layer of dipoles, indicating the relevance of the transverse extension while characterizing two-dimensional dipolar systems. An anisotropic excitation spectrum exhibiting a highly tunable, rotonlike minimum can arise entirely from the dipole-dipole interactions, by tilting the dipoles. At the magic angle and in the absence of contact interactions, the long-wavelength excitations are not phononlike and always unstable. The post-roton-instability dynamics, in contrast to phonon instability, in a uniform condensate, is featured by a transient, defect-free, stripe pattern, which eventually undergoes local collapses, and driving the condensate back into the stable regime can make them sustained for longer. Hopping between stripes has been observed before it melts into a uniform state in the presence of dissipation. Finally, we discuss a class of solutions, in which a quasi-two-dimensional condensate is self-trapped in one direction, as well as a regime of interaction parameters, including attractive short-range interactions, at which a two-dimensional anisotropic soliton can be stabilized, and we show that a chromium condensate with a relatively small number of atoms is well suited for this.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.