Abstract
The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar Bose-Einstein condensates, which is followed by collapse in 3D geometries. We show that in 2D, the nature of the post-instability dynamics is fundamentally different, due to the stabilization of 2D solitons. As a result, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic trap, the post-instability dynamics is characterized by a transient pattern formation followed by the creation of stable 2D solitons. This dynamics should be observable in ongoing experiments, allowing for the creation of stable 2D solitons for the first time ever in quantum gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.