Abstract
Superconductivity in 3D Nb–Cu nanocomposite granular films have been studied with varying thickness for two different compositions, Nb rich with 88 at% of Nb and Cu rich with 46 at% of Nb. For both compositions, the superconducting transition temperature (Tc) decreases with decreasing film thickness. For any thickness, doubling the Cu content in the films decreases the Tc by about 2 K. To explore if phase fluctuations play any role in superconductivity in these 3D films, the superfluid stiffness (JS) of the films was measured using low frequency two-coil mutual inductance (M) technique. Interestingly, the measurement of M in magnetic fields showed two peaks in the imaginary component of M for both Nb rich and Cu rich films. The two peaks were associated with the pair-breaking effect of the magnetic field on the intra and inter-granular coupling in these films consisting of random network of superconductor (S) and normal metal (N) nano-particles. Furthermore, JS was seen to decrease with decreasing film thickness and increasing Cu content. However, for all films studied JS remained higher than the superconducting energy gap (∆) indicating that phase fluctuations do not play any role in superconductivity in the film thickness and composition range investigated. Our results indicate that an interplay of quantum size effects (QSE) and superconducting proximity effect (SPE) controls the Tc with composition in these 3D nano-composite films.
Highlights
Superconductivity in 3D Nb–Cu nanocomposite granular films have been studied with varying thickness for two different compositions, Nb rich with 88 at% of Nb and Cu rich with 46 at% of Nb
The upper panel shows the resistance vs temperature (R–T) where T c is the temperature where the resistance goes below the measurable limit
The graph shows two distinct results: First for both compositions (Nb rich and Cu rich), T c decreases with reducing film thickness, a result well known in superconducting thin films[23]
Summary
Superconductivity in 3D Nb–Cu nanocomposite granular films have been studied with varying thickness for two different compositions, Nb rich with 88 at% of Nb and Cu rich with 46 at% of Nb. If we extrapolate the variation of J S to lower thickness (black dashed line in Fig. 4d), we see that JS ~ ∆(0)/kB for films with thicknesses < 5 nm for the Nb rich nano-composites while for the Cu rich films it becomes comparable at thickness < 25 nm i.e. very close to the 2D regime similar to the granular Al films studied p reviously[19,20,21,22].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.