Abstract

Chiral recognition and separation is of general research interests in natural product separation and the pharmacy industry. In this work, we develop a novel strategy to modify achiral porous metal-organic framework (MOF) surfaces via a superficial chiral etching process (SCEP), in which reacting a presynthesized achiral MOF with a chiral ligand produces an achiral@chiral MOF core-shell hybrid composition. SCEP creates chiral species on an achiral porous MOF surface but does not change the porosity and pore structure, enabling core-shell composition enantioselective sorption. Reacting (+)-camphoric acid, (+)-Cam, and 1,4-diazabicyclo[2.2.2]octane (Dabco) with [Cu3(Btc)2] microcrystals leads to a chiral MOF of [Cu2((+)-Cam)2Dabco] crystallites attached on the surface of [Cu3(Btc)2] (Btc = 1,3,5-benzenetricarboxylate). The resulting [Cu3(Btc)2]@[Cu2((+)-Cam)2Dabco] core-shell composition displays preferred sorption kinetics toward (S)-limonene against (R)-limonene, with a similar discrimination effect with pure chiral [Cu2((+)-Cam)2Dabco]. Superficial chiral etching of the porous achiral MOF represents an economic and efficient strategy for enantioselective separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.