Abstract

Aluminum-scandium alloys with high scandium content by mass were prepared by spark plasma sintering (SPS). The morphology, the phase composition, and the microstructures after sintering at different temperatures of Al-Sc alloy powders were investigated by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), and X-ray diffractometry (XRD). The effect of sintering temperature on the microstructure of Al-Sc alloys was studied in the paper. The results show that, the Al-Sc alloy powders after ball milling are regular with the particle size of 25~45 μm, and the mechanical alloying of Al-Sc alloy powders is realized initially. In addition to the Al and Sc phases, a small amount of Al3Sc and AlSc2 are generated. The spark plasma sintering can realize the rapid densification of Al-Sc alloy with high scandium content, the Al-Sc alloy with 30% Sc by mass is successfully produced by SPS method. By adjusting the SPS process parameters, the relative density of sintered sample can be improved to 92.19%. The samples with the higher density and non-obvious grain boundary are achieved at the sintered temperature above 500℃. The second phases of Al3Sc and AlSc2 are formed by the combination of Sc with the increase of sintering temperature, and the peak intensity of Al3Sc increases gradually.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call