Abstract
The construction of wearable piezoresistive sensors with high elasticity, large gauge factor, and excellent durability in a harsh high-temperature environment is highly desired yet challenging. Here, a lightweight, superelastic, and fatigue-resistant spongy conductor was fabricated via a sponge-constrained network assembly, during which highly conductive graphene and flame-retardant montmorillonite were alternatively deposited on a three-dimensional melamine scaffold. The as-obtained spongy conductor exhibited a highly deformation-tolerant conductivity up to 80% strain and excellent fatigue resistance of 10,000 compressive cycles at 70% strain. As a result, the spongy conductor can readily work as a piezoresistive sensor and exhibited a high gauge factor value of ∼2.3 in a strain range of 60-80% and excellent durability under 60% strain for 10,000 cycles without sacrificing its piezoresistive performance. Additionally, the piezoresistive sensor showed great thermal stability up to 250 °C for more than 7 days and sufficient flame-retardant performance for at least 20 s. This lightweight, superelastic, and flame-retardant spongy conductor reveals tremendous potential in human motion detection against a harsh high-temperature environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have