Abstract

Oil-based drill cuttings (OBDC) are a typical hazardous solid waste that arises from drilling operations in oil and gas fields. The supercritical water oxidation (SCWO) of OBDC was comprehensively investigated in a batch reactor under the conditions of various oxygen coefficients (OC, 1.5–3.5), temperatures (T, 400–500°C) and reaction times (t, 0.5–10min). Preheating experiments indicated that most of the organic compounds in the initial OBDC sample were distributed within gaseous, oil, aqueous and solid phases, with no more than 9.8% of organic compounds converted into inorganic carbon. All tested variables, i.e., OC, T and t, positively affect the transformation of carbon compounds from the oil and solid phases to the aqueous phase and, ultimately, to CO2. Carbon monoxide is the primary stable intermediate. The total organic carbon (TOC) removal efficiency can reach up to 89.2% within 10min at 500°C. Analysis of the reaction pathways suggests both homogeneous and heterogeneous reactions exist in the reactor. The homogeneous reaction is a typical SCWO reaction that is governed by a free radical mechanism, and the heterogeneous reaction is dominated by mass transfer. The information obtained in this study is useful for further investigation and development of hydrothermal treatment procedures for OBDC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.