Abstract
The flowers of the ylang ylang tree contain an essential oil which is utilized in high-quality perfumes. The traditional mode of extraction is by steam distillation but it has been shown that the more modern supercritical fluid extraction (SFE) using carbon dioxide has potential for replacing steam distillation. This technology, however, generally operates under high pressures, up to 500 bar. The work described in this paper examines the possibility of using carbon dioxide at much lower pressures, close to the critical point, i.e., 75 bar and 30 °C. Two series of experiments were therefore carried out under such conditions, the first using carbon dioxide alone and the second utilizing ethanol as a co-solvent, the conditions being chosen by applying the Design of Experiments (DOE) technique over ranges of pressure from 80 to 120 bar and temperatures from 35 to 50 °C. Extraction curves are presented which show the rates of extraction to be significantly increased by the use of the co-solvent, with the measured values being 0.74% to 0.97% with no co-solvent addition, increasing to 0.92% to 1.16% with co-solvent addition. These rates are, however, lower than the rates previously reported at higher pressures, i.e., 0.9 to 1.8%. Better quality oils are, however, produced compared to those at higher pressures, with the major components being benzene benzoate, benzene salicylate, cubebene, and benzyl acetate. It is recommended that an economic study be carried out to evaluate whether it is feasible to utilize this process commercially.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have