Abstract

Superconvergence phenomenon of the Legendre spectral collocation method and the p-version finite element method is discussed under the one dimensional setting. For a class of functions that satisfy a regularity condition (M): ∥u (k) ∥L∞ ≤ cM k on a bounded domain, it is demonstrated, both theoretically and numerically, that the optimal convergent rate is supergeometric. Furthermore, at proper Gaussian points or Lobatto points, the rate of convergence may gain one or two orders of the polynomial degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.