Abstract

In this paper, a Spectral Stochastic Collocation Method (SSCM) is proposed for the capacitance extraction of interconnects with stochastic geometric variations for nanometer process technology. The proposed SSCM has several advantages over the existing methods. Firstly, compared with the PFA (Principal Factor Analysis) modeling of geometric variations, the K-L (Karhunen-Loeve) expansion involved in SSCM can be independent of the discretization of conductors, thus significantly reduces the computation cost. Secondly, compared with the perturbation method, the stochastic spectral method based on Homogeneous Chaos expansion has optimal (exponential) convergence rate, which makes SSCM applicable to most geometric variation cases. Furthermore, Sparse Grid combined with a MST (Minimum Spanning Tree) representation is proposed to reduce the number of sampling points and the computation time for capacitance extraction at each sampling point. Numerical experiments have demonstrated that SSCM can achieve higher accuracy and faster convergence rate compared with the perturbation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.