Abstract

This paper is concerned with superconvergence properties of discontinuous Galerkin (DG) methods for two-dimensional linear hyperbolic conservation laws over rectangular meshes when upwind fluxes are used. We prove, under some suitable initial and boundary discretizations, the (2k+1)th order superconvergence rate of the DG approximation at the downwind points and for the cell averages, when piecewise tensor-product polynomials of degree k are used. Moreover, we prove that the gradient of the DG solution is superconvergent with a rate of (k+1)th order at all interior left Radau points; and the function value approximation is superconvergent at all right Radau points with a rate of (k+2)th order. Numerical experiments indicate that the aforementioned superconvergence rates are sharp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.