Abstract

In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal. 5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order 2k+1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2k+1$$\\end{document} for DG methods based on upwind-biased fluxes depends on the parity of the order k. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.