Abstract

In this paper, we shall establish the superconvergence property of the Runge–Kutta discontinuous Galerkin (RKDG) method for solving a linear constant-coefficient hyperbolic equation. The RKDG method is made of the discontinuous Galerkin (DG) scheme with upwind-biased numerical fluxes coupled with the explicit Runge–Kutta algorithm of arbitrary orders and stages. Superconvergence results for the numerical flux, cell averages as well as the solution and derivative at some special points are shown, which are based on a systematical study of the $$\hbox {L}^2$$ -norm stability for the RKDG method and the incomplete correction techniques for the well-defined reference functions at each time stage. The result demonstrates that the superconvergence property of the semi-discrete DG method is preserved, and the optimal order in time is provided under the smoothness assumption that is independent of the number of stages. As a byproduct of the above superconvergence study, the expected order of the post-processed solution is obtained when a special initial solution is used. Some numerical experiments are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.