Abstract
A plasmonic analogue of electromagnetically induced transparency is activated and tuned in the terahertz (THz) range in asymmetric metamaterials fabricated from high critical temperature (Tc) superconductor thin films. The asymmetric design provides a near-field coupling between a superradiant and a subradiant plasmonic mode, which has been widely tuned through superconductivity and monitored by Fourier transform infrared spectroscopy. The sharp transparency window that appears in the extinction spectrum exhibits a relative modulation up to 50% activated by temperature change. The interplay between ohmic and radiative damping, which can be independently tuned and controlled, allows for engineering the electromagnetically induced transparency of the metamaterial far beyond the current state-of-the-art, which relies on standard metals or low-Tc superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.