Abstract

The induced superconductivity (SC) in a robust and scalable quantum material with strong Rashba spin-orbit coupling is particularly attractive for generating topological superconductivity and Majorana bound states (MBS). Gold (111) thin film has been proposed as a promising candidate because of the large Rashba energy, the predicted topological nature, and the possibility for large-scale MBS device fabrications. We experimentally demonstrate two important steps towards achieving such a goal. We successfully show induced SC in the Shockley surface state (SS) of ultrathin Au(111) layers grown over epitaxial vanadium films, which is easily achievable on a wafer scale. The emergence of SC in the SS, which is physically separated from a bulk superconductor, is attained by indirect quasiparticle scattering processes instead of by conventional interfacial Andreev reflections. We further show the ability to tune the SS Fermi level (E_{F}) by interfacing SS with a high-κ dielectric ferromagnetic insulator EuS. The shift of E_{F} from ∼550 to ∼34 mV in superconducting SS is an important step towards realizing MBS in this robust system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.