Abstract
As a follow-up of our previous work on pressure-induced metallization of the 2H_{c}-MoS_{2} [Chi etal., Phys. Rev. Lett. 113, 036802 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.036802], here we extend pressure beyond the megabar range to seek after superconductivity via electrical transport measurements. We found that superconductivity emerges in the 2H_{a}-MoS_{2} with an onset critical temperature T_{c} of ca. 3K at ca. 90GPa. Upon further increasing the pressure, T_{c} is rapidly enhanced beyond 10K and stabilized at ca. 12K over a wide pressure range up to 220GPa. Synchrotron x-ray diffraction measurements evidenced no further structural phase transition, decomposition, and amorphization up to 155GPa, implying an intrinsic superconductivity in the 2H_{a}-MoS_{2}. DFT calculations suggest that the emergence of pressure-induced superconductivity is intimately linked to the emergence of a new flat Fermi pocket in the electronic structure. Our finding represents an alternative strategy for achieving superconductivity in 2H-MoS_{2} in addition to chemical intercalation and electrostatic gating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.