Abstract

Cerium-based ternary compounds CeNi2Cd20 and CePd2Cd20 do not exhibit long-range order down to millikelvin temperature range. Given the large separation between Ce ions which significantly reduces the super-exchange interactions and vanishingly small Ruderman–Kittel–Kasuya–Yosida interaction, here we show that nodal superconductivity mediated by the valence fluctuations must be a ground state in these materials. We propose that the critical temperature for the superconducting transition can be significantly increased by applying hydrostatic pressure. We employ an extended periodic Anderson lattice model which includes the long-range Coulomb interactions between the itinerant electrons as well as the local Coulomb interaction between the predominantly localized and itinerant electrons to compute a critical temperature of the superconducting transition. Using the slave-boson approach we show that fluctuations mediated by the repulsive electron–electron interactions lead to the emergence of d-wave superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.