Abstract

The degree of the isolation of the CuO2 planes (e.g. distance or bond valence to the apical coordination) has been shown by quantitative algorithms to be the major factor in determining aspects of the doping curves. They include the magnitude of the optimal number of doped holes (hop) and the corresponding Tcop. It is shown that the roots of these phenomenological laws lie in a related structural dependence of super-exchange. The latter is expressed in the pseudo-gap or Neel temperature of the undoped parent compound. A fruitful language can be developed which deals with a buildup of complex quantum chemical features by bringing two holes into vicinity of a super-exchange O, forming a “local” Cu2O7 pair. Structural considerations also dictate that stress is relieved by alternate orthogonal pair orientation. This leads to plaid patterns with primary and secondary channels of charge. The presence of these two types of charge channels is involved in the mechanism of superconducting charge transport. Similar structuring of doped charge into plaid patterns of “local” pairs has been proposed for “all” high Tc superconductivity. STM now gives pictorial representation of the remnants of such an electronic crystal structure. The response of these bond-ordering motifs to structural details is further discussed. These ideas supply organization to the manifold experimental situation and provide opportunities for a unifying theory for high Tc superconductivity in terms of real space structuring of “local” pairs, largely on crystal-chemical principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.