Abstract

Superconducting detectors have no dead surface-layer. It has been found that even if there is a 700 nm-thick SiO2 layer on the sensitive area, the detectors produce measurable output pulses for molecule impact. This feature is very attractive in solid-state spectroscopy of low-energy atoms or molecules for basic chemistry, nuclear physics, and life science. The superconducting tunnel junction detectors enable the measurement of the deposited energy for individual particle impacts in contrast to conventional particle detectors that rely on secondary particle emission. A study of the particle-surface interaction with atoms, proteins, and synthetic polymers has revealed that there are three regions. As the mass value increases, the pulse height reduction, or the decrease of the deposited energy, is remarkable in a mass range below 2,000, the pulse height increases in 2,000–100,000, and finally almost constant pulse height appears in 100,000–1,000,000.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call