Abstract

Radiation hardness of a scintillating tile/fiber calorimeter is studied by irradiating electromagnetic test modules with 2.5 GeV electrons at the KEK linac. The induced damage is evaluated in a 2 GeV electron test beam by measuring the reduction in pulse height after irradiation. The pulse height peak for 2 GeV electrons is found to decrease by 19.3 ± 1.3% for a dose of 0.61 Mrad and 14.9 ± 2.7% for 0.33 Mrad. In addition to these modules, several tile/fiber assemblies were irradiated up to 4.8 Mrad and the damage as a function of dose was measured with a radioactive source. Effects of radiation damage on the linearity and energy resolution at higher energies are evaluated using a GEANT simulation and the measured damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.