Abstract

Flip-chip architectures have recently enabled significant scaling-up of multi-qubit circuits and have been used to assemble hybrid quantum systems that combine different substrates, for example, for quantum acoustics experiments. The standard flip-chip method uses superconducting galvanic connections between two substrates, typically implemented using sophisticated indium wafer-bonding systems, which give highly reliable and temperature-cyclable assemblies, but are expensive, somewhat inflexible in design, and require robust substrates that can sustain the large compressive forces required to cold-weld the indium bonds. A much simpler method is to assemble dies using very low-force contacts and air-dried adhesives, although this does not provide a galvanic contact between the dies. Here, we demonstrate that the latter technique can be used to reliably couple superconducting qubit circuits, in which the qubits are on separate dies, without the need for a galvanic connection. We demonstrate full vector qubit control of each qubit on each of the two dies, with high-fidelity single-shot readout, and further demonstrate entanglement-generating excitation swaps as well as benchmark a controlled-Z entangling gate between the two qubits on the two dies. This exemplifies a simple and inexpensive assembly method for two-plus-one-dimensional quantum circuit integration that supports the use of delicate or unusually shaped substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call