Abstract

The effect of disorder induced by neutron irradiation in a nuclear reactor (thermal neutron fluence 1×1019cm−2) on the superconducting transition temperature T c and the upper critical field H c2 of polycrystalline MgB2 samples was investigated. Despite the appreciable radiation-induced distortions (more than ten displacements per atom), the initial crystal structure (C32) was retained. The temperature T c decreased from 38 to 5 K upon irradiation and was practically completely restored after the subsequent annealing at a temperature of 70°C. A weak change in the dH c2/dT derivative upon irradiation is explained by the fact that the irradiated samples are described by the “pure” limit of the theory of disordered superconductors. The suppression of T c upon disordering may be due to the isotropization of the originally anisotropic (or multicomponent) superconducting gap or to a decrease in the density of electronic states at the Fermi level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.