Abstract

The two-dimensional Hubbard model exhibits superconductivity with d-wave symmetry even at half-filling in the presence of a next-nearest neighbor hopping. Using plaquette cluster dynamical mean-field theory with a continuous-time quantum Monte Carlo impurity solver, we reveal the non-Fermi liquid character of the metallic phase in proximity to the superconducting state. Specifically, the low-frequency scattering rate for momenta near (π, 0) varies nonmonotonically at low temperatures, and the dc conductivity is T linear at elevated temperatures with an upturn upon cooling. Evidence is provided that pairing fluctuations dominate the normal-conducting state even considerably above the superconducting transition temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call