Abstract

We report magnetic field orientation-dependent measurements of the superconducting upper critical field in high quality single crystals of URu(2)Si(2) and find the effective g factor estimated from the Pauli limit to agree remarkably well with that found in quantum oscillation experiments, both quantitatively and in the extreme anisotropy (≈10(3)) of the spin susceptibility. Rather than a strictly itinerant or purely local f-electron picture being applicable, the latter suggests the quasiparticles subject to pairing in URu(2)Si(2) to be "composite heavy fermions" formed from bound states between conduction electrons and local moments with a protected Ising behavior. Non-Kramers doublet local magnetic degrees of freedom suggested by the extreme anisotropy favor a local pairing mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.