Abstract

The binary compound V3Ga can exhibit two near-equilibrium phases, the A15 structure that is superconducting and the Heusler D03 structure that is semiconducting and antiferromagnetic. Density functional theory calculations show that these two phases are nearly degenerate, being separated in energy by only ±10 meV/atom. Our magnetization measurements on bulk-grown samples show antiferromagnetism and superconducting behavior below 14 K. These results indicate the possibility of using V3Ga for quantum technology devices exploiting the co-existence of superconductivity and antiferromagnetism in a dual-phase material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.