Abstract
In this paper, the nonsymmetric interior penalty Galerkin (NIPG) method on a Bakhvalov-type mesh is proposed for a singularly perturbed problem with two small parameters. In order to reflect the behavior of layers more accurately, a balanced norm, rather than the common energy norm, is introduced. By selecting special penalty parameters at different mesh points, we establish the supercloseness of k+12 order, and prove an optimal order of uniform convergence in a balanced norm. Numerical experiments are proposed to confirm our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.