Abstract

Bound states in the continuum are exotic nonradiating modes with very high quality factors enabling enhanced wave-matter interactions. While they typically require array-type of systems, versions of such states have been reported in single dielectric resonators, giving rise to suppressed scattering states termed supercavity modes. In this work, we experimentally demonstrate a supercavity mode in an all-metallic resonator open for probing by free-space microwaves. Our design exploits careful tailoring of the boundaries around the resonator, which supports an octupole mode fostering a significant increase in the quality factor. The main advantage of the resonator is its simplicity and robustness, and it may be utilized as a stand-alone unit for energy harvesting and sensing or as an element for advanced functional material designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.