Abstract

A protocol for controlling the localization of an electron with a fixed projection of spin between two quantum dots in a material with spin-orbit (SO) interaction is studied. Due to SO coupling, the manipulation of the electron shuttling between both quantum dots also leads to a mixing between spin projections near to the avoided crossing of levels. We use a transitionless quantum driving approach, neglecting SO interaction, to analytically design simple electric and magnetic pulses able to rapidly drive the electron along an adiabatic Landau–Zener manifold. We show that the same fields in the presence of SO interaction can also give a fast high-fidelity transition between the qubit states. The performance of the proposed protocol is assessed in the presence of SO interactions of typical semiconductor materials. It is shown that it provides a fast and efficient spin-conserving method for controlling the electron position in a double quantum dot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call