Abstract
Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry–Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup. A monolithically coated F-P etalon structure, only 1.686 mm in thickness, was mounted onto an angle-tunable motorized stage, and Raman spectra were automatically acquired for many different angles of the etalon. Using a low-resolution grating of 150 g/mm by itself, without the F-P etalon, we obtained a best-case regular Raman spectral linewidth of 44 cm−1 for the characteristic Raman peak from a diamond sample. When we applied the SSR-RS technique to diamond, we obtained a super-spectral resolution peak that was 27x narrower, namely 1.63 cm−1, and a Raman shift of 1331.3 cm−1. To baseline SSR-RS, we applied the super-spectral-resolution method to extract the linewidth and peak wavelength of the laser excitation itself and obtained a laser linewidth of better than 0.014 cm−1, with a laser wavelength centered at 531.962 nm, close to the stated wavelength of 532 nm. This extracted laser linewidth is 3300x times narrower compared to its measured linewidth of 46 cm−1. Thus, our work suggests that SSR-RS can be very generally applied to greatly improve the resolution and precision of Raman instrumentation, and potentially lower the cost of obtaining high-resolution Raman spectroscopic capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.