Abstract

Blazed, grazing incidence x-ray reflection gratings are an important component of modern high resolution spectrometers and related x-ray optics. These have traditionally been fabricated by diamond scribing in a ruling engine, or more recently by interferometric lithography followed by ion etching. These traditional methods result in gratings which suffer from a number of deficiencies, including high surface roughness and poor control of the groove profile. These deficiencies lead to poor diffraction efficiency and high levels of scattered light. We have developed a novel fabrication method for fabricating blazed x-ray reflection gratings which utilizes silicon wafers that are cut 0.7° off of the (111) plane. In solutions such as potassium hydroxide (KOH), silicon is etched in 〈111〉 directions orders of magnitude slower than in other directions, resulting in extremely smooth {111} facets. The gratings are patterned using interferometric lithography with 351.1 nm wavelength and transferred into the substrate using tri-level resist processing, reactive-ion etching (RIE), and silicon nitride masking during the KOH etch. The narrow (<0.1 μm) ridge of silicon which supports the nitride mask is removed using a chromium lift-off step followed by a CF4 RIE trench etch. The result is a grating with extremely smooth blaze facets which is suitable for x-ray reflection after evaporative coating with thin Cr/Au. Atomic force microscope images confirm that fabricated gratings have less than a 0.4 nm rms roughness—much smoother than conventional gratings which have over ∼1 nm roughness. Theory predicts that reduced blaze facet roughness increases diffraction efficiency. Experiments and simulations performed at the Lawrence Berkeley Laboratory and Columbia University confirm that efficiency is increased; in fact, measured peak efficiencies reach ∼80% of calculated theoretical limits. Peak grating efficiencies were achieved that are ∼35% greater than that of the best available ruled masters of comparable design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.