Abstract
Efficient labeling methods for protein visualization with minimal tag size and appropriate photophysical properties are required for single-molecule localization microscopy (SMLM), providing insights into the organization and interactions of biomolecules in cells at the molecular level. Among the fluorescent light-up aptamers (FLAPs) originally developed for RNA imaging, RhoBAST stands out due to its remarkable brightness, photostability, fluorogenicity, and rapid exchange kinetics, enabling super-resolved imaging with high localization precision. Here, we expand the applicability of RhoBAST to protein imaging by fusing it to protein-binding aptamers. The versatility of such bifunctional aptamers is demonstrated by employing a variety of protein-binding aptamers and different FLAPs. Moreover, fusing RhoBAST with the GFP-binding aptamer AP3 facilitates high- and super-resolution imaging of GFP-tagged proteins, which is particularly valuable in view of the widespread availability of plasmids and stable cell lines expressing proteins fused to GFP. The bifunctional aptamers compare favorably with standard antibody-based immunofluorescence protocols, as they are 7-fold smaller than antibody conjugates and exhibit higher bleaching-resistance. We demonstrate the effectiveness of our approach in super-resolution microscopy in secondary mammalian cell lines and primary neurons by RhoBAST-PAINT, an SMLM protein imaging technique that leverages the transient binding of the fluorogenic rhodamine dye SpyRho to RhoBAST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.