Abstract
In deep-tissue photoacoustic imaging, optical-contrast images of deep-lying structures are formed by recording acoustic waves that are generated by optical absorption. Although photoacoustics is perhaps the leading technique for high-resolution deep-tissue optical imaging, its spatial resolution is fundamentally limited by the acoustic wavelength, which is orders of magnitude longer than the optical diffraction limit. Here, we present an approach for surpassing the acoustic diffraction limit in photoacoustics by exploiting inherent temporal fluctuations in the photoacoustic signals due to sample dynamics, such as those induced by the flow of absorbing red blood cells. This was achieved using a conventional photoacoustic imaging system by adapting concepts from super-resolution fluorescence fluctuation microscopy to the statistical analysis of acoustic signals from flowing acoustic emitters. Specifically, we experimentally demonstrate that flow of absorbing particles and whole human blood yields super-resolved photoacoustic images, and provides static background reduction. By generalizing the statistical analysis to complex-valued signals, we demonstrate super-resolved photoacoustic images that are free from common photoacoustic imaging artifacts caused by band-limited acoustic detection. The presented technique holds potential for contrast-agent-free microvessel imaging, as red blood cells provide a strong endogenous source of naturally fluctuating absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.