Abstract

The resolution of photoacoustic imaging deep inside scattering media is limited by the acoustic diffraction limit. In this Letter, taking inspiration from super-resolution imaging techniques developed to beat the optical diffraction limit, we demonstrate that the localization of individual optical absorbers can provide super-resolution photoacoustic imaging well beyond the acoustic diffraction limit. As a proof-of-principle experiment, photoacoustic cross-sectional images of microfluidic channels were obtained with a 15MHz linear capacitive micromachined ultrasonic transducer array, while absorbing beads were flown through the channels. The localization of individual absorbers allowed us to obtain a super-resolved cross-sectional image of the channels by reconstructing both the channel width and position with an accuracy better than λ/10. Given the discrete nature of endogenous absorbers such as red blood cells, or that of exogenous particular contrast agents, localization is a promising approach to push the current resolution limits of photoacoustic imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call