Abstract

We have observed a remarkable decrease in photoluminescence (PL) from a blue-light emitting InGaN single-quantum-well (SQW) structure under the radiation of a green laser due to the stimulated emission depletion (STED) phenomenon. By extending the observed STED effect, super-resolution imaging of the blue-light emission lateral distribution was demonstrated for the InGaN-SQW structure through co-irradiation using a doughnut-shaped green light beam and a Gaussian-shaped violet excitation light beam. We measured point-spread functions (PSFs) to evaluate the spatial resolution of the system by imaging a small emission area. A lateral PSF size of ~150 nm was confirmed, which was approximately 40% smaller than that without the STED beam. This demonstrates that the STED technique is applicable for PL imaging of semiconductor quantum structures. The present approach may make possible a new strategy for characterizing and investigating the spatial inhomogeneity of emission properties and carrier dynamics in InGaN-based quantum wells, as well as in other semiconductor materials exhibiting quantum confinement effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.