Abstract

The ability to detect, image and localize single molecules optically with high spatial precision by their fluorescence enables an emergent class of super-resolution microscopy methods which have overcome the longstanding diffraction barrier for far-field light-focusing optics. Achieving spatial resolutions of 20-40nm or better in both fixed and living cells, these methods are currently being established as powerful tools for minimally-invasive spatiotemporal analysis of structural details in cellular processes which benefit from enhanced resolution. Briefly covering the basic principles, this short review then summarizes key recent developments and application examples of two-dimensional and three-dimensional (3D) multi-color techniques and faster time-lapse schemes. The prospects for quantitative imaging - in terms of improved ability to correct for dipole-emission-induced systematic localization errors and to provide accurate counts of molecular copy numbers within nanoscale cellular domains - are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.