Abstract

Recently, a new approach for super-resolution microscopy has emerged which is based on the successive localization of single molecules. The majority of molecules are prepared to reside in a nonfluorescent dark state, leaving only a few single molecules fluorescing. The single molecules can subsequently be localized on the camera image. Successive localization of all molecules allows reconstruction of a super-resolved image of the labeled structure. A variety of ways for limiting the number of locatable molecules have been developed recently which expand this current field of imaging. Here we describe a super-resolution microscopy method that employs the use of reversible, generic dark states, for example radical ion states. This method requires only a single laser source and can be carried out with many fluorescent dyes, in some cases, even in living cells. We provide a step-by-step procedure for this method, which we have called Blink Microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.