Abstract

Fetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images. To combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time. Prospective. Twenty-eight fetuses (gestational week 36 [interquartile range 33-38 weeks]). 1.5 T, balanced steady-state free precession (bSSFP) cine sequence. Images were acquired using fully sampled Doppler ultrasound-gated clinical bSSFP cine as reference, with equivalent cine sequences with decreased phase-encoding resolution (25%, 33%, and 50% of clinical standard). Two super-resolution methods based on convolutional neural networks were proposed and evaluated (phasrGAN and phasrresnet). Data were partitioned into training (36 cine slices), validation (3 cine slices), and test sets (67 cine slices) without overlap. Conventional reconstruction methods using bicubic interpolation and k-space zeropadding were used for comparison. Three blinded observers scored image quality between 1 and 10. Image scores are reported as median [interquartile range] and were compared using Mann-Whitney's nonparametric test with P < 0.05 showing statistically significant differences. Both proposed methods showed no significant difference in image quality compared to clinical images (8 [7-8.5]) down to 33% (phasrGAN 8 [6.5-8]; phasrresnet 8 [7-8], all P ≥ 0.19) phase-encoding resolution, i.e., up to three times faster image acquisition, whereas bicubic interpolation and k-space zeropadding showed significantly lower quality for 33% phase-encoding resolution (both 7 [6-8]). Super-resolution enhancement can be used for fetal cine cardiac MRI to reduce image acquisition time while maintaining image quality. This may lead to an improved success rate for fetal cine MR imaging, as the impact of fetal motion is lessened by shortened acquisitions. 1 TECHNICAL EFFICACY: Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call