Abstract

We explore the arguably most fundamental aspect of energy-transfer upconversion (ETU), namely the dependence of upconversion luminescence from a higher-energy level, following ETU excitation from a metastable lower-energy level, on direct luminescence from that metastable level. We investigate ETU among neighboring Nd3+ ions in single crystals of GdVO4 and LaSc3(BO3)4 with different doping concentrations by measuring, after short-pulse laser excitation with different pump energies, the infrared luminescence decay from the metastable 4F3/2 level and the yellow upconversion luminescence decay from the 4G7/2 level. We observe a highly super-quadratic dependence of upconversion on direct luminescence intensity. We conclude that the commonly assumed quadratic law of ETU, as proposed by Grant's model and frequently employed in rate-equation simulations, is inadequate to the description of ETU processes. Whereas Zubenko's model, which considers a finite migration rate, provides significantly better fits to the experimental luminescence-decay curves, also this model cannot accurately reproduce the measured decay curves, partly because it does not take the non-homogeneous distribution of active ions into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call