Abstract

The use of super-junction (SJ) techniques in PIN photodiodes is proposed in this letter for the first time with the objective to assist the optoelectronic integrated circuits (OEICs) implementation in complementary metal oxide semiconductor (CMOS), bipolar CMOS (BiCMOS) and bipolar-CMOS-double diffused MOS (BCD) technologies. Its technological viability is also discussed to make it credible as an alternative to other OEICs approaches. Numerical simulation of realistic SJ-PIN devices, widely used in high power electronics, demonstrates the possibility to integrate high-performance CMOS-based OEICs in epitaxial layers with doping concentrations above 1×1015 cm-3. The induced lateral depletion at low reverse biased voltage, assisted by the alternated N and P-doped pillars, allows high-speed transient response in SJ-PIN detecting wavelengths between 400 and 800 nm. Moreover, other important parameters as the responsivity and the dark current are not degraded in respect to the conventional PIN (C-PIN) structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.