Abstract

Thin film nitinol (TFN) is a novel material with which to cover stents for the treatment of a wide range of vascular disease processes. This study aimed to show that TFN, if treated to produce a super hydrophilic surface, significantly reduces platelet adhesion, potentially rendering covered stents more resistant to thrombosis compared to commercially available materials. TFN was fabricated using a sputter deposition process to produce a 5-μ thin film of uniform thickness. TFN then underwent a surface treatment process to create a super hydrophilic layer. Platelet adhesion studies compared surface treated TFN (S-TFN) to untreated TFN, polytetrafluoroethylene, Dacron, and bulk nitinol. In vivo swine studies examined the placement of an S-TFN covered stent in a 3.5 mm diameter external iliac artery. Angiography confirmed placement, and repeat angiography was performed at 2 wk followed by post mortem histopathology. S-TFN significantly reduced platelet adhesion without any evidence of aggregation compared with all materials studied (P < 0.05). Furthermore, in vivo swine studies demonstrated complete patency of the S-TFN covered stent at 2 wk. Post mortem histopathology showed rapid endothelialization of the S-TFN without excessive neointimal hyperplasia. These results demonstrate that S-TFN significantly reduces platelet adhesion and aggregation compared with commercially available endograft materials. Furthermore, the hydrophilic surface may confer thromboresistance in vivo, suggesting that S-TFN is a possible superior material for covering stents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.