Abstract
Although enhancing the catalytic oxidation activity is a hotspot in thermal-driven catalytic disposal of persistent organic pollutants, few studies have managed to improve catalysts' water-resistance properties. Herein, we developed Fe2−xMnxO3 perovskite to boost the catalytic oxidation of hexabromocyclododecane under humidity by modulating its super-exchange interaction (SEI, Fe3+ + Mn3+ → Fe2+ + Mn4+). Fe0.4Mn1.6O3, with the strongest SEI, exhibits the biggest oxidation rate-constant, which is 3 times higher than that of commonly used Fe2O3 without SEI. Notably, unlike Fe2O3 which deactivates at a relative humidity of 5 %. Fe0.4Mn1.6O3 maintains its activity and is even boosted by 22 % compared to dry conditions. Mechanistic insights reveal that SEI between Fe and Mn enhances the reactivity of Mn4+- linked Olatt by lowering the reductive temperature from Mn4+ to Mn3+. Meanwhile, SEI promotes the adsorption of the associatively adsorbed H2O (HOH-type water) by reducing adsorption energy, thereby facilitating the formation of hydroxyl species, which are crucial for the oxidation process under humidity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have